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Abstract—A system of nonlinear stochastic functional-difference equations with finite delay
is considered. By assumption, this system has a “partial” trivial equilibrium (with respect
to part of the state variables). The problem under study is to analyze partial stability in
probability of this equilibrium: stability is considered with respect to part of the variables
determining it. The problem is solved using a discrete-stochastic modification of the method of
Lyapunov–Krasovskii functionals. Conditions for partial stability in probability are established.
An example is provided to illustrate the features of the proposed approach and the rationale
for introducing a one-parameter family of functionals.
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1. INTRODUCTION

In the qualitative analysis and design of nonlinear dynamic systems, a separate area of research
is associated with investigating the stability of systems of stochastic discrete (finite-difference)
equations [1–9]. The interest in such systems is caused by the implementation of digital con-
trol systems, modeling problems in various fields, and numerical solution problems for systems of
stochastic differential equations.

Within this research area, systems of discrete equations of order m � 1,

x(k + 1) = X(k, x(k), x(k − 1), . . . , x(k −m)),

are interpreted as systems of discrete equations with finite delay ; for example, see the mono-
graphs [9–11]. This interpretation provides new capabilities for the qualitative analysis of such
systems, although they can be transformed into standard one-step systems of discrete equations by
introducing new variables and extending the state space.

On the other hand, in networked control applications, there arise systems of discrete equations
with variable delay:

x(k + 1) = X(k, x(k), x(k − τ1(k)), . . . , x(k − τl(k))),

where functions τi(k) take an integer value from an interval 0 < τi(k) � m at each discrete time
instant k. When fixing the delay value, these systems can be treated as one-step discrete switched
systems in the extended state space [12].
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762 VOROTNIKOV, MARTYSHENKO

The general class of systems of nonlinear discrete equations with finite delay is defined by a
system of functional-difference equations [9, 11, 13–19] of the form

x(k + 1) = X(k, xk),

whose state at each discrete time instant k ∈ Z+ = {0, 1, 2, . . .} is described by a discrete vector
function xk = x(k + j), j ∈ Z0 = {−m,−m+ 1, . . . , 0} with the delayed argument; the number
m � 1 specifies the delay value. This class of systems has been studied separately since the early
1990s and includes systems of discrete equations with constant, variable, and interval-type (single
or multiple) delays.

With the transition to the functional-difference treatment, the stability of systems of nonlinear
stochastic discrete equations with delay can be analyzed using a stochastic modification of the
method of Lyapunov–Krasovskii functionals [9, 20–25] in the space of discrete (grid) functions.
For deterministic nonlinear systems of discrete equations with delay, this approach was presented
in [13–19]. The results obtained therein relate to the stability problem of the trivial equilibrium with
respect to all variables. More general problems of partial stability have been actively considered
in recent time. Note that their analysis significantly differs, see the review [26]. However, partial
stability problems have not been studied for systems of nonlinear stochastic discrete equations with
delay.

This paper is devoted to a general class of systems of nonlinear stochastic discrete equations with
finite delay. By assumption, the system under consideration has a “partial” trivial equilibrium (with
respect to some part of the state variables). We formulate the problem of stability in probability
of this equilibrium with respect to part of the variables determining it. This problem is solved
using the method of functionals representing discrete analogs of Lyapunov–Krasovskii functionals.
They are widespread in the analysis of systems of nonlinear functional-differential equations with
aftereffect (delay).

2. PROBLEM STATEMENT

We consider the linear finite-dimensional space R
n of vectors x with the Euclidean norm |x| and

divide the vector x into two parts: x = (yT, zT)T. (The symbol T indicates the transpose.) The
following class of nonlinear stochastic discrete (finite-difference) equations of the first order has
been sufficiently investigated by now [1, 2]:

x(k + 1) = X(k, x(k), ξ(k)),

where k ∈ Z+ denotes the discrete time; x(k) is a sequence of state vector values; ξ(k) is a sequence
of independent random vectors defined on a probability space (Ω, F, P ) with identical distribution
laws for each k ∈ Z+. Here Ω is a space of elementary events {ω} with measurable sets with respect
to a filtration Fk defined by a σ-algebra F and a given probability measure P : F → [0, 1].

Applications often lead to more general systems of stochastic nonlinear discrete equations with
finite delay [9, 20–24, 27, 28] described by

x(k + 1) = X(k, xk, ξ(k)). (1)

At each discrete time instant k ∈ Z+, their state is defined by a discrete vector function
xk = x(k + j), j ∈ Z, with the delayed argument.

For each k ∈ Z+, let the operator X(k, ψ, ξ) defining the right-hand side of system (1) in the
space {ψ} of discrete (grid) functions ψ(θ), θ∈Z0 with the norm ‖ψ‖ = max{|ψ(0)|, |ψ(−1)|, . . . ,
|ψ(−m)|} be continuous in ψ, ξ in the domain ||ψ|| <∞. The initial state x0 of system (1) is
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given by a set of values x0 = {x(k0), x(k0 − 1), . . . , x(k0 −m)}, which form a matrix of dimensions
n × (m + 1). Assume that this state is deterministic. Then for all k0 � 0, x0, there exist a unique
random discrete process x(k0, x0) adapted to the flow of σ-algebras Fk that is the solution of
system (1) and a corresponding set of the sampled trajectories of system (1). We denote by
x(k) = x(k; k0, x0) the values of the random vector function x(k0, x0) at step k of the process.

Due to the partition x = (yT, zT)T and the corresponding partition xk = (yTk , z
T
k )T, the system

under consideration can be written as the two groups of equations

y(k + 1) = Y (k, yk, zk, ξ(k)), z(k + 1) = Z(k, yk, zk, ξ(k)).

Under the condition Y (k, 0, zk , ξ(k)) ≡ 0, the set M{xk : yk = 0} is a “partial” equilibrium of
system (1), i.e., an invariant set of this system. The existence of a “full” equilibrium xk = 0 of
system (1) is not required: this assumption may even contradict the common sense of the problems
being solved.

The stability of the “partial” equilibrium yk = 0 is considered with respect to a given part of the
variables determining it (not all of them). For this purpose, we suppose that y = (yT1 , y

T
2 )T, where

the vector y1 includes only those components of the vector y with respect to which stability will be
analyzed. To expand the circle of concepts for the y1-stability of the “partial” equilibrium yk = 0,
we introduce an arbitrary partition z = (zT1 , z

T
2 )T of the vector z into two groups of variables.

Let Dδ denote the domain of values x0 such that ||y0|| < δ, ||z10|| < L, and ||z20|| <∞. Here the
norms are defined by

||y0|| = max |y(k0 + j)|, ||zi0|| = max |zi(k0 + j)| (i = 1, 2) for j ∈ Z0.

Definition 1. The “partial” equilibrium yk = 0 of system (1) is said to be:

1) y1-stable in probability for large values of z10 and on the whole with respect to z20 if, for each
k0 ∈ Z+, any arbitrarily small numbers ε > 0 and γ > 0, and any given number L > 0, there exists
a number δ(ε, γ, L, k0) > 0 such that

P

{
sup
k�k0

|y1(k; k0, x0)| > ε

}
< γ for all k � k0 and x0 ∈ Dδ; (2)

2) uniformly y1-stable in probability for large values of z10 and on the whole with respect to z20
if δ = δ(ε, γ, L).

We formulate the following problem: find conditions under which the “partial” equilibrium
y(k) = 0 of system (1) is y1-stable in probability for large values of z10 and on the whole with
respect to z20, using the method of discrete Lyapunov–Krasovskii functionals.

This problem can also be treated as auxiliary in the stability analysis of the “partial” equilibrium
yk = 0 of system (1) with respect to all variables; when adding the control inputs u = u(k, xk) to
system (1), a corresponding partial stabilization problem arises naturally.

Remark 1. If x0 is a random variable with values in R
n×(m+1) (independent of ξ(k)) and the

inclusion x0 ∈ Dδ holds almost surely, we arrive at the definitions similar to those of partial stability
(see [29]).

Remark 2. These notions are very close to the following ones of partial stability: with respect to
all [30] and some [31] variables of the “partial” equilibrium of systems of stochastic Itô differential
equations and systems of stochastic discrete equations [8]. Also, they are very close to stability
with respect to part of the variables of systems of functional-differential equations with aftereffect
(delay) [32, 33].
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3. CONDITIONS OF PARTIAL STABILITY IN PROBABILITY

In the space {ψ} of discrete (grid) functions ψ(θ), θ ∈ Z0, we consider single-valued scalar
functionals V = V (k, ψ), V (k, 0) ≡ 0, that are continuous in ψ for each k ∈ Z+ and are defined in
the domain

k � 0, ||ψy1|| < h, ||ψy2|| + ||ψz|| <∞. (3)

The partition ψ = (ψT
y1, ψ

T
y2, ψ

T
z )T corresponds to the above partition x = (yT1 , y

T
2 , z

T)T of the
state vector x; ||ψyi|| = max |ψyi(θ)| (i = 1, 2), ||ψz || = max |ψz(θ)| for θ ∈ Z0.

The vector function xk = xk(k0, x0) defines a discrete element of the trajectory of system (1) at
step k of the process. Let us substitute this function into the functional V (t, ψ). An analog of its
derivative due to system (1) is the averaged differences (increments) [1, 2, 9]

LV (k, ψ) = Ek,ψ[V (k + 1, xk+1(k0, x0))] − V (k, ψ),

where the operator Ek,ψ defines the conditional expectation of the random variable V (k + 1,
xk+1(k0, x0)) given xk(k0, x0) = ψ.

In addition, to formulate partial stability conditions, we will also utilize the following auxiliary
functionals and functions:

1. Scalar functionals V ∗(k, ψy, ψz1) and V ∗(ψy, ψz1), continuous in the domain (3), to indicate
an upper bound for the functional V and an auxiliary vector function μ(k, ψ), μ(k, 0) ≡ 0, to
correct the construction domain of the functional V. The vector function ψz1 is given by the
partition ψz = (ψT

z1, ψ
T
z2)

T corresponding to the partition z = (zT1 , z
T
2 )T. Let us define ||μ(k, ψ)|| =

sup |μ(k, ψ(θ))| for k ∈ Z+, θ ∈ Z0;

2. A Continuous monotonically increasing in r > 0 scalar function a(r), a(0) = 0, which specifies
standard requirements for the main functional V in the form of a lower bound.

The auxiliary function μ(k, ψ) is introduced since y1-stability analysis for the “partial” equilib-
rium yk = 0 of system (1) in the common domain

||ψy1|| < h1 < h, ||ψy2|| + ||ψz|| <∞ (4)

of the function space neither always reveals the desired properties of the functional V nor endows
it with these properties. It is rational to study the functional V in the narrower domain

||ψy1|| + ||μ(k, ψ)|| < h1 < h, ||ψy2|| + ||ψz || <∞ (5)

based on the following considerations: in fact, the y1-stability of the “partial” equilibrium yk = 0
of system (1) means satisfaction of the corresponding probability estimates (2) not only for the
components of the vector y1 but also for those of some function μ(k, x) of the state variables of
system (1). In some cases, such a function μ(k, x) cannot be specified in advance. Therefore, the
corresponding function μ(k, ψ) in the discrete function space should be naturally interpreted as an
additional vector function, which is determined when solving the original y1-stability problem (like
a suitable functional V ). This leads to the rationale for correcting the construction domain (4) of
the functional V via an additional auxiliary function μ(k, ψ).

Theorem 1. Assume that for system (1), it is possible to indicate a functional V and an addi-
tional vector function μ(k, ψ), μ(k, 0) ≡ 0, so that, for each k ∈ Z+ and a sufficiently small number
h1 > 0, the following conditions will hold in the domain (5) :

V (k, ψ) � a(|ψy1(0)| + |μ(k, ψ(0))|), (6)

V (k, ψ) � V ∗(k, ψy, ψz1), V ∗(k, 0, ψz1) ≡ 0, (7)

LV (k, ψ) � 0. (8)
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Then the “partial” equilibrium yk = 0 of system (1) is y1-stable in probability for large values
of z10 and on the whole with respect to z20.

Theorem 2. With conditions (7) being replaced by

V (k, ψ) � V ∗(ψy, ψz1), V ∗(0, ψz1) ≡ 0, (9)

under conditions (6) and (8), the “partial” equilibrium yk = 0 of system (1) is uniformly y1-stable
in probability for large values of z10 and on the whole with respect to z20.

The proofs of Theorems 1 and 2 are provided in the Appendix.

Remark 3. In Theorems 1 and 2, the auxiliary functional V and its averaged difference (incre-
ment) LV (k, ψ) due to system (1) are, generally speaking, alternating in the domain (4). Along
with the main functional V, the additional auxiliary function μ is introduced for the most rational
replacement of the domain (4) with the domain (5). Conditions (7) and (9) identify an admissible
structure of the functional V, which is determined by the specifics of the partial stability problem
posed above: under these conditions, it is possible to use an arbitrary continuous functional V ∗

with V ∗(k, 0, ψz1) ≡ 0 or V ∗(0, ψz1) ≡ 0 that bounds the functional V from above.

Remark 4. We can take sign-definite (in all variables) quadratic functionals (or those of higher
order) V (k, ψ) ≡ V ∗(k, ψy1, μ(k, ψ)) as admissible ones. In this case, the choice of the func-
tions μ must be consistent with conditions (7) and (9): for example, the functions of the form
μ = μ(ψy2, ψz1), μ(0, ψz1) ≡ 0, are admissible.

Remark 5. Let system (1) have the “full” equilibrium xk = 0, μ(k, ψ) ≡ 0, ξ(k) ≡ 0, and the
initial condition x0 ∈ Dδ be replaced by ||x0|| < δ. Then, under conditions (6) and (8), we arrive
at a discrete variant [34, 35] of the classical Rumyantsev theorem [36] on stability with respect to
a given part of the variables and its modification for μ(k, ψ) �= 0 [37]. In this case, conditions (7)
and (9) are not required.

Remark 6. Azbelev’s scientific school developed another approach to the interpretation and
analysis of the stability of stochastic functional-difference systems; for details, see [38].

4. EXAMPLES

We distinguish two classes of nonlinear discrete systems of a given structure, for which partial
stability is analyzed in the parameter space. At the same time, we will demonstrate the rationale
for using a one-parameter family of functionals.

Example 1. Consider the discrete system (1) composed of the equations

y1(k + 1) = [a1 + α1ξ1(k)]y1(k) + a2y1(k − 1) + ly2(k − 1)z1(k − 1) + α2y1(k − 1)ξ2(k),

y2(k + 1) = [b+ dy1(k − 1)]y2(k),

z1(k + 1) = [c+ ey1(k − 1)]z1(k), z2(k + 1) = Z2(k, xk, ξ(k)),

(10)

where ξ1(k) and ξ2(k) are mutually uncorrelated sequences of independent random variables with
identical standard Gaussian distributions for each k ∈ Z+; a1, a2, b, c, d, e, l, α1 , and α2 are constant
parameters. System (10) is a special case of system (1) with m = 1; the operator Z2 satisfies only
the general requirements of system (1) for m = 1.

System (10) has the “partial” equilibrium

y1k = y2k = 0. (11)

Consider the family (M,β1, β2 = const > 0) of functionals

V (ψ) = ψ2
y1(0) +Mψ2

y2(0)ψ2
z1(0) + (β1 + α2

2)ψ2
y1(−1) + β2ψ

2
y2(−1)ψ2

z1(−1), (12)

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024



766 VOROTNIKOV, MARTYSHENKO

representing discrete analogs of the Lyapunov–Krasovskii functionals, and the auxiliary scalar dis-
crete function

μ1(ψ(θ)) = ψy2(θ)ψz1(θ), θ ∈ Z0 = {k = −1, 0}; (13)

let μ1(0) and μ1(−1) denote the values of the function μ1(ψ(θ)) for θ = 0 and θ = −1, respectively.

We have the relations

ψ2
y1(0) +Mμ21(0) � V (ψ) = V ∗(ψy1, ψy2, ψz1), V ∗(0, 0, ψz1) ≡ 0.

The functional V (12) satisfies conditions (6) and (7) in the domain (5), and for all k ∈ Z+∪Z0

its averaged difference (increment) LV (ψ) due to system (10) is defined by

LV (ψ) = Ek,ψ
{
V (ψ(0),X(k, ψ(−1), ψ(0), ξ(k)))

} − V (ψ(−1), ψ(0))

= Ek,ψ
{
[a1ψy1(0) + a2ψy1(−1) + lψy2(−1)ψz1(−1) + α1ψy1(0)ξ1(k) + α2ψy1(−1)ξ2(k)]2

+Mψ2
y2(0)ψ2

z1(0)[b+ dψy1(−1)]2[c+ eψy1(−1)]2
}− ψ2

y1(0) −Mψ2
y2(0)ψ2

z1(0)

+(β1 + α2
2)[ψ2

y1(0) − ψ2
y1(−1)] + β2[ψ2

y2(0)ψ2
z1(0) − ψ2

y2(−1)ψ2
z1(−1)]

= a21ψ
2
y1(0) + 2a1a2ψy1(0)ψy1(−1) + 2a1lψy1(0)μ1(−1)

+ 2a2lψy1(−1)μ1(−1) + l2μ21(−1) + α2
1ψ

2
y1(0) + α2

2ψ
2
y1(−1) +Mb2c2μ21(0)

+ r1ψy1(−1)μ21(0) + r2ψ
2
y1(−1)μ21(0) + r3ψ

3
y1(−1)μ21(0) +Md2e2ψ4

y1(−1)μ21(0)

− ψ2
y1(0) −Mμ21(0) + (β1 + α2

2)[ψ
2
y1(0) − ψ2

y1(−1)] + β2[μ21(0) − μ21(−1)]

= (a21 + α2
1 + α2

2 − 1 + β1)ψ2
y1(0) + 2a1a2ψy1(0)ψy1(−1) + (a22 − β1)ψ

2
y1(−1)

+ 2a1lψy1(0)μ1(−1) + 2a2lψy1(−1)μ1(−1) + (Mb2c2 −M + β2)μ
2
1(0)

+ (l2 − β2)μ21(−1) + r1ψy1(−1)μ21(0) + r2ψ
2
y1(−1)μ21(0)

+ r3ψ
3
y1(−1)μ21(0) +Md2e2ψ4

y1(−1)μ21(0),

r1 = bcr0, r2 = M(b2e2 + 4bcde+ c2d2), r3 = der0, r0 = 2M(be+ cd).

In these formulas, the conditional expectation has been calculated considering the relations
E[ξi(k)] = 0, E[ξ2i (k)] = 1, corresponding to the standard Gaussian distributions of the mutually
uncorrelated random variables ξi(k) (i = 1, 2).

For the sake of simpler analysis, we utilize the inequalities

2a1a2ψy1(0)ψy1(−1) � |a1a2|[ψ2
y1(0) + ψ2

y1(−1)],

2a2lψy1(−1)μ1(−1) � |a2l|[ψ2
y1(−1) + μ21(−1)]

to obtain the following upper bound for the quadratic part (LV )2 of the above expression for
LV (ψ):

(LV )2 � (a21 + |a1a2| + α2
1 + α2

2 − 1 + β1)ψ2
y1(0)

+ 2a1lψy1(0)μ1(−1) + (l2 + |a2l| − β2)μ21(−1)

+ (a22 + |a1a2| + |a2l| − β1)ψ2
y1(−1) + (Mb2c2 −M + β2)μ21(0).

Under the conditions

a21 + |a1a2| + α2
1 + α2

2 − 1 + β1 < 0,

(a21 + |a1a2| + α2
1 + α2

2 − 1 + β1)(l2 + |a2l| − β2) > a21l
2,

a22 + |a1a2| + |a2l| − β1 < 0, Mb2c2 −M + β2 < 0,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024



PARTIAL STABILITY IN PROBABILITY OF NONLINEAR STOCHASTIC . . . 767

(LV )2 is a negative definite function of the variables ψy1(0), ψy1(−1), μ1(0), and μ1(−1) based
on Sylvester’s criterion. Therefore, for a sufficiently small number h1 > 0, the averaged difference
(increment) LV (ψ) of the functional (12) satisfies the inequality LV (ψ) � 0 in the domain (5).

Assuming that the parameters of system (10) satisfy the conditions

(|a1| + |a2|)2 + |a2l| + a21 + a22 < 1,

[(|a1| + |a2|)2 + |a2l| + α2
1 + α2

2 − 1][l2 + |a2l| +M(b2c2 − 1)] > a2l2,
(14)

we choose the parameters β1 and β2 of the functional (12) as

β1 = a22 + |a1a2| + |a2l| + ε1, β2 = M(1 − b2c2) − ε2.

For sufficiently small numbers ε1, ε2, and h1 > 0, we have LV (ψ) � 0 in the domain (5) (but not
in the domain (4)) for any values of the parameters d and e. Hence, besides conditions (6) and (7),
condition (8) holds for the functional V (12) in the domain (5).

Based on Theorem 2, under conditions (14), the “partial” equilibrium (11) of system (10) is
uniformly y1-stable in probability for large values of z10 and on the whole with respect to z20. The
operator LV (ψ) associated with system (10) is alternating in the domain (4).

Note that given combinations of the parameters of system (10) can be included in (or excluded
from) the stability domain by choosing an appropriate number M. For example, if l2 + |a2l| = 1,
then the seemingly “natural” choice M = 1 in the functional (12) makes the stability domain (14)
an empty set for any values of the parameters b, c, d, and e. However, in the same case l2 + |a2l| = 1,
we may consider the domain (14) by setting M = 2.

On the other hand, given a number M, the y1-stability domain can be changed by modifying
the estimates for the quadratic part (LV )2 of the expression defining LV (ψ). Indeed, with the
inequality

2a1lψy1(0)μ1(−1) � |a1l|[ψ2
y1(0) + μ21(−1)],

in the case of a2 = 0 and a sufficiently small number h1 > 0, the inequality LV (ψ) � 0 will hold in
the domain (5) under the conditions

a21 + α2
1 + α2

2 + |a1l| − 1 + β1 � 0,

l2 + |a1l| − β2 � 0, M(b2c2 − 1) + β2 � 0.

In this case, the y1-stability domain is given by

(|a1| + |l|)2 + α2
1 + α2

2 < 1 +M(1 − b2c2), b2c2 < 1; (15)

in contrast to the domain (14), for M = l2 = 1 the domain (15) is a non-empty set. For illustrative
purposes, note that for M = 1 and b2c2 = α2

1 + α2
2 = 0, the stability domains (14) and (15) have

the form a21 + l2 < 1 and |a1| + |l| < √
2, respectively; moreover, the domain (15) covers the case

l2 = 1.

In addition, for α2 = 0 andM = 2, the domain (12) coincides with that of the uniform y1-stability
in probability of the “partial” equilibrium y1(k) = y2(k) = 0 of system (10) without aftereffect. Such
a system was analyzed in [8] using the Lyapunov function V (x) = y21 + 2y22z

2
1 and the auxiliary

function μ1 = y2z1.

As a numerical experiment, we present the results of calculations using the recurrence rela-
tions (12) on the interval k ∈ [0, 25] for yi(−1) = yi(0) = 0.1 (i = 1, 2), z1(−1) = z1(0) = 1 and the
parameters a1 = 1/2, b = 3/2, a2 = 0, c = 1/3, and d = e = l = 1.
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Table

k y1(k) y2(k) z1(k) ξ1(k) ξ2(k) y1(k) y2(k) z1(k)

–1 0.1 0.1 1 – – 0.1 0.1 1
0 0.1 0.1 1 0 0 0.1 0.1 1
1 0.15 0.16 0.4333 –1 0 0.15 0.16 0.4333
2 0.1750 0.2560 0.1877 1 0 0.1251 0.2560 0.1877
3 0.1568 0.4224 0.2094 1 0 0.1735 0.4224 0.2094
4 0.1264 0.4288 0.0954 0 0 0.1926 0.6864 0.0960
5 0.1517 0.7104 0.0468 –1 0 0.1847 1.1487 0.0487
6 0.1168 1.1554 0.0215 –1 0 0.0967 1.9443 0.0256
7 0.0916 1.9084 0.0104 1 0 0.0720 3.2757 0.0133
8 0.0706 3.0854 0.0060 0 0 0.1098 5.2303 0.0057
9 0.0551 4.9107 0.0025 0 0 0.0985 8.2220 0.0023
10 0.0461 7.7127 0.0004 1 0 0.0791 13.236 0.0011
. . . . . . . . . . . . . . . . . . . . . . . . . . .
15 0.0050 65.557 5.5× 10−6 –1 0 0.0151 127.93 1.1× 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . .
20 0.00039 504.13 2.4× 10−8 –1 0 0.0010 1005.5 5.4× 10−8

. . . . . . . . . . . . . . . . . . . . . . . . . . .
25 1.9× 10−5 3832.1 4.7× 10−10 0 0 2.9× 10−5 7649.1 2.2× 10−10

For the “undisturbed” case ξ1,2(k) ≡ 0, the calculation results are combined on the left-hand side
of the table. Under the random disturbances ξ1(k) and ξ2(k) whose intensities α1 and α2 satisfy
condition (14), the sample trajectories are grouped around the undisturbed trajectory focusing
along the Oy2 axis as k → ∞. To assess the effect of random disturbances on the dynamics of
system (10), we also provide the calculation results for α1 = 1/3, α2 = 0, and the same parameter
values in the case ξ2(k) ≡ 0 and the admissible realization ξ1(k) on the interval k ∈ [0, 25] given by
the sequence {0,−1, 1, 1, 0,−1,−1, 1, 0, 0, 1, 1,−1, 0, 0,−1, 1, 0,−1, 1,−1, 0, 1,−1, 0} (see the right-
hand side of the table).

Example 2. Consider the discrete system (1) composed of the equations

y1(k + 1) = [a1 + α1ξ1(k) + ly2(k − 1)z1(k − 1)]y1(k) + α2y1(k − 1)ξ2(k),

y2(k + 1) = [b+ dy1(k − 1)]y2(k),

z1(k + 1) = [c+ ey1(k − 1)]z1(k), z2(k + 1) = Z2(k, xk, ξ(k)),

(16)

which represent a structural modification of system (10).

To analyze the y1-stability in probability of the “partial” equilibrium (11) of system (16), we uti-
lize the discrete functional V (12) for β1 = 0 and β2 = M(1 − b2c2) − ε2 and the auxiliary discrete
function (13).

The quadratic part [LV (ψ)]2 of the averaged difference (increment) LV (ψ) of this functional
due to system (16) has the form

[LV (ψ)]2 = (a21 +α2
1 +α2

2− 1)ψ2
y1(0) + (Mb2c2−M +β2)μ21(0) + (l2 −β2)μ21(−1).

Therefore, for a sufficiently small number h1 > 0, the inequality LV (ψ) � 0 will hold in the
domain (5) for any values of the parameters d, e, l1, and l2 if

a21 + α2
1 + α2

2 < 1, M(b2c2 − 1) + β2 < 0, l2 − β2 < 0.

As a result, under the conditions

a21 + α2
1 + α2

2 < 1, l2 +M(b2c2 − 1) < 1, (17)
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the “partial” equilibrium (11) of system (17) is uniformly y1-stable in probability for large values
of z10 and on the whole with respect to z20 based on Theorem 2.

Similar to the analysis of system (10), if l2 = 1, then the “natural” choice M = 1 in the func-
tional (12) makes the stability domain (17) an empty set for any values of the parameters b, c, d,
and e. However, this set can be expanded as well with a suitably chosen number M, e.g., M = 2.

5. CONCLUSIONS

This paper has considered a nonlinear system of stochastic functional-difference equations with
finite delay subjected to a discrete “white” noise process. For such a system, problems of stability
in probability with respect to a given part of the variables of the “partial” trivial equilibrium have
been formulated. The discrete vector function defining the initial state of the system has been
supposed deterministic.

Sufficient stability conditions have been established using a discrete-stochastic version of the
method of Lyapunov–Krasovskii functionals in an appropriate modification. Along with the main
discrete functional V, an additional auxiliary discrete function μ (generally speaking, a vector
function) has been considered for correcting the construction domain of the functional V in the
discrete function space. The rationale for this approach lies in that the resulting functional V and
its averaged difference (increment) due to the system under consideration can be alternating.

APPENDIX

Proof of Theorem 1.

Assume that conditions (6)–(8) are valid for each k ∈ Z+ and a sufficiently small number
h1 > 0 in the domain (5). Let us take arbitrary numbers ε (0 < ε < h1) and k0 and an initial
value x0 from the domain Dε = {||y0|| < ε, ||z10|| � L, ||z20|| <∞}. Consider the random process
x(k0, x0) representing the solution of system (1). We denote by kε the “integer” moment when
this process first leaves the domain |y1| � ε : kε = inf{k : |y1(k; k0, x0)| > ε} for k � k0. Letting
t(k) = min(kε, k); t(k0) = k0, we have the equalities

V
(
t(k), xt(k)(k0, x0)

)
− V (k0, x0) =

k−1∑
s=k0

ΔV
(
t(s), xt(s)(k0, x0)

)
;

ΔV
(
t(s), xt(s)(k0, x0)

)
= ΔV

(
t(s+ 1), xt(s+1)(k0, x0)

)
−ΔV

(
t(s), xt(s)(k0, x0)

)
.

Due to these equalities, the sequence v(k) of the random variables v(k) = V (t(k), xt(k)(k0, x0))
generated by the realizations x(k, ω), ξ(k, ω) of the random process x(k), ξ(k) defined by system (1)
satisfies the “averaged” relations

E
[
V
(
t(k), xt(k)(k0, x0)

)
− V (k0, x0)

]
= EV

(
t(k), xt(k)(k0, x0)

)
− V (k0, x0) =

k−1∑
s=k0

EΔV
(
t(s), xt(s)(k0, x0)

)
.

(A.1)

By the rule for calculating the repeated expectation, from (A.1) it follows that

EΔV
(
t(s), xt(s)(k0, x0)

)
= E

{
Et(s),xt(s)(k0,x0)

[
V (t(s+ 1), xt(s+1)(k0, x0))

]}
− V

(
t(s), xt(s)(k0, x0)

)
= E

[
LV

(
t(s), xt(s)(k0, x0)

)]
,
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and we arrive at the discrete-functional version of Dynkin’s formula:

EV
(
t(k), xt(k)(k0, x0)

)
− V (k0, x0) =

k−1∑
s=k0

E
[
LV

(
t(s), xt(s)(k0, x0)

)]
.

Consequently, based on condition (8),

EV
(
t(k), xt(k)(k0, x0)

)
� V (k0, x0) <∞. (A.2)

If k > kε (in this case, t(k) = kε), we have |y1(t(k); k0, x0)| = |y1(kε; k0, x0)| � ε. If k < kε (in this
case, t(k) = k), the Chebyshev–Markov inequality and the estimate (A.2) yield

P [|y1(k; k0, x0)| > ε] � a−1(ε)E[a(|y1(k; k0, x0)|)]
� a−1(ε)E[a(|y1(k; k0, x0)| + |μ(k, x(k; k0, x0))|)]

� a−1(ε)E[V (k, xt(k)(k0, x0))]

= a−1(ε)E[V (t(k), xt(k)(k0, x0))] � a−1(ε)V (k0, x0).

(A.3)

The functional V is continuous for each k ∈ Z+, V (t, 0) ≡ 0, and conditions (7) hold. Therefore,
for all k0 � 0 and any given number L > 0, the limit relation

lim
||y0||→0

V (k0, x0) = 0 (A.4)

is valid for ||z10|| � L uniformly in ||z20|| <∞.

Hence, for all k0 � 0 and any given number L > 0, inequalities (A.3) and (A.4) lead to the limit
relation

lim
||y0||→0

P

[
sup
k>k0

|y1(k; k0, x0)| > ε

]
= 0,

holding for ||z10|| � L uniformly in ||z20|| <∞. As a result, for each k0 � 0, any arbitrarily small
numbers ε > 0 and γ > 0, and any given number L > 0, there exists a number δ(ε, γ, L, k0) > 0 such
that inequality (2) will hold for all k � k0 and x0 ∈ Dδ. Thus, the “partial” equilibrium yk = 0 of
system (1) is y1-stable in probability for large values of z10 and on the whole with respect to z20.

Proof of Theorem 2.

If conditions (9) are satisfied instead of conditions (7), for any given number L > 0 the limit
relation (A.4) will hold for ||z10|| � L uniformly in ||z20|| <∞ and, moreover, in k0 � 0. As a result,
for each k0 � 0, any arbitrarily small numbers ε > 0 and γ > 0, and any given number L > 0, there
exists a number δ(ε, γ, L) > 0 independent of k0 such that inequality (2) will hold for all k � k0 and
x0 ∈ Dδ. Thus, the “partial” equilibrium yk = 0 of system (1) is uniformly y1-stable in probability
for large values of z10 and on the whole with respect to z20.
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